Innovation for Our Energy Future

Trends in Concentrator Photovoltaics

ARPA-E Workshop on High-Efficiency, High-Concentration Photovoltaics Through Advanced Optical System Design March 28, 2012

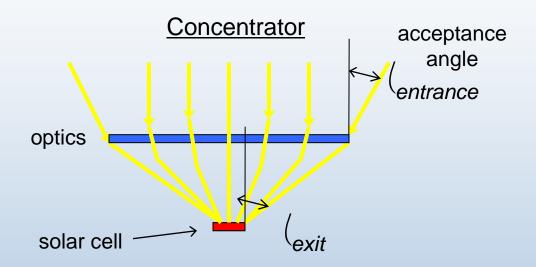
Daniel J. Friedman

National Renewable Energy Laboratory

Fundamental Constraints

CPV and the Two Challenges of PV

Sunlight is

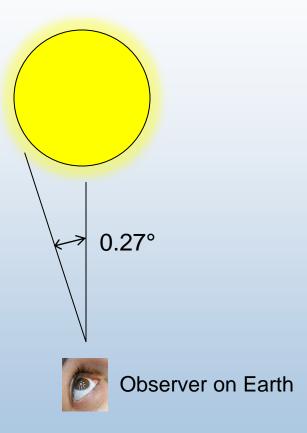

- •Not power-dense only ~1kW/m²
- Broad spectrum

Multijunction CPV addresses both challenges

- Light-gathering (fresnel lenses, mirrors) boosts effective power density to more useful levels
- Multijunctions efficiently extract power from sunlight's
- broad spectrum
- •What's next?

Fundamental Limits to Concentrator Optics

Maximum possible pointfocus concentration is



Want high concentration, large $\binom{}{entrance}$, non-grazing $\binom{}{exit}$ Can't have them all - must trade off

Focusing the Sun

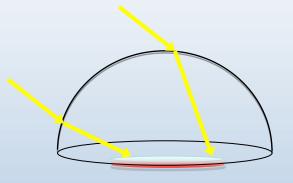
Sun's disk cannot be concentrated by more than ~46000 n²

Want tracking tolerance of 1°?
Then max conc. ~2000 n²

Optics and Tracking

Concentrators have to be pointed at the sun, or "tracked", throughout the day

Required pointing accuracy increases with concentration increases expense, challenges reliability


Clever optical design can increase angular acceptance, mitigating tracking requirements

Concentrating the Entire Sky?

If we could concentrate light from the entire sky:

- Would collect non-direct light
- Wouldn't have to track

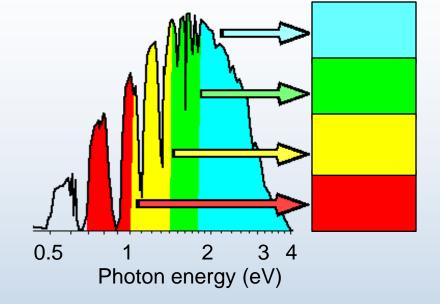
$$\binom{}{entrance} = 90^{\circ}$$
, so Max conc. = n^2

With n=1.5, get a concentration of ~2

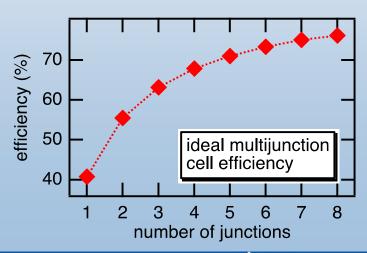
Technically possible, but not cost-effective

Fundamental Limits to Single-Junction Efficiency

Shockley-Queisser postulate:

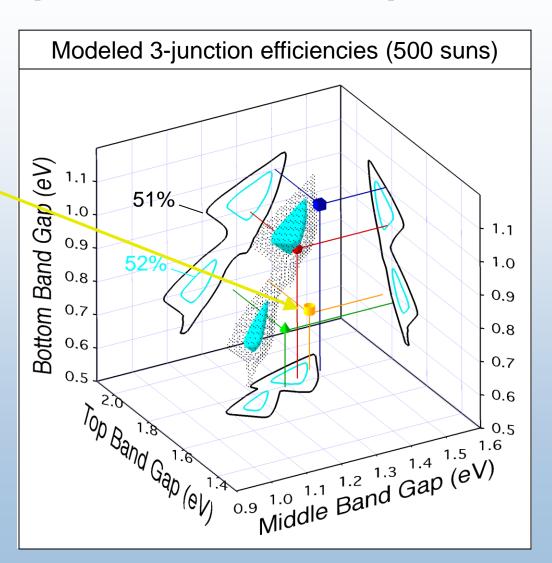

Photon at energy hv into bandgap E_g delivers energy:

Eg for $(hv > E_a)$; **0** for $(hv < E_a)$ spectrum thermalization 1.5 captured oower (W m⁻²nm⁻¹ loss lost 1.0 non-absorption 0.5 loss 1000 1500 2000 2500 500 wavelength (nm)


Overcoming the Single-Junction Limit

Reduce thermalization losses

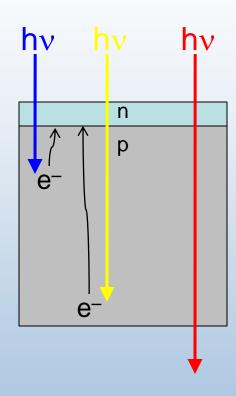
Capture broader region of the spectrum


Allows us to beat the single-junction efficiency limit

Efficiency Depends on Band Gaps

Much higher efficiencies than the commercial standard possible in principle

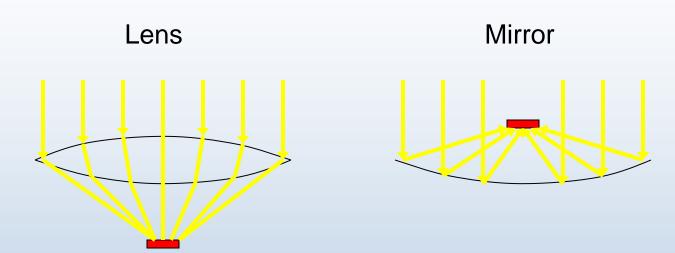
But bandgaps are not the sole parameter!



Absorption, Collection

Want:

- strong photon absorption
- long carrier diffusion:


 $L > 1/\alpha$

Minority-carrier diffusion length (μ , τ)

Development of CPV Technology

Optics - Lens vs Mirror

Or combination of the two

Choice has consequences for

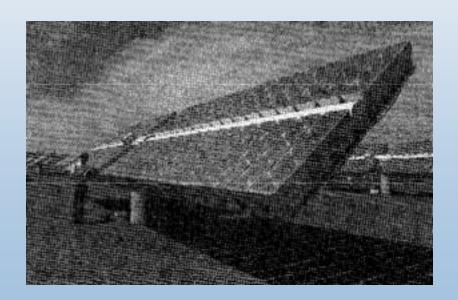
- packaging form factor
- heat sinking
- reliability/degradation

- chromatic aberration
- cell illumination
- etc

Examples of Mirror Configurations

Early Demonstration of CPV Concept

Development of CPV started not long after the 1954 invention of the modern solar cell:


Ralph (1966) demonstrated 3x concentration w. conical reflectors onto Si cells

Early CPV Systems

Sandia program developed more sophisticated systems, addressing tracking and thermal management

In this program, Martin Marrietta installed 350kW Fresnel-lens system in Saudi Arabia (1981)

Widely-Used Design Approaches

big reflective dish

small Fresnel lenses
Probably the most
widely used

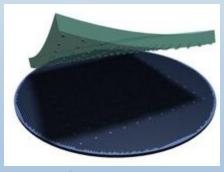
Nontraditional Design Approachs

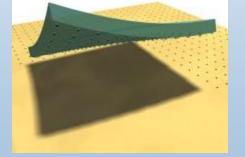
Innovations in Mechanics

Low-profile tracking

Reflective elements combined with Fresnel lenses maximize solar coverage

Triple junction cells, with nearly 40% efficiency, deliver maximum energy

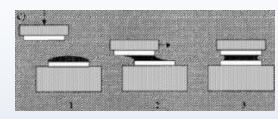

Small heliostats with coupled mirrors



energyinnovations.com/ seedmagazine.com/news/2006/05/cleantech.php sunflower250.html

Microsystems-enabled Concepts

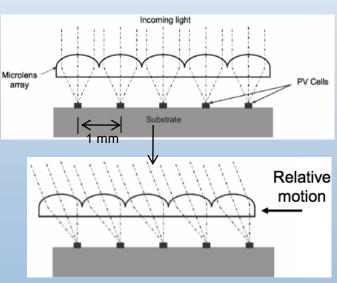
Parallel printing of very small cells Low profile module 34% module demonstrated - Semprius



www.semprius.com

Microsystems-enabled PV

Parallel self-assembly (Greg Nielsen, Sandia)


overview

capillary self-assembly

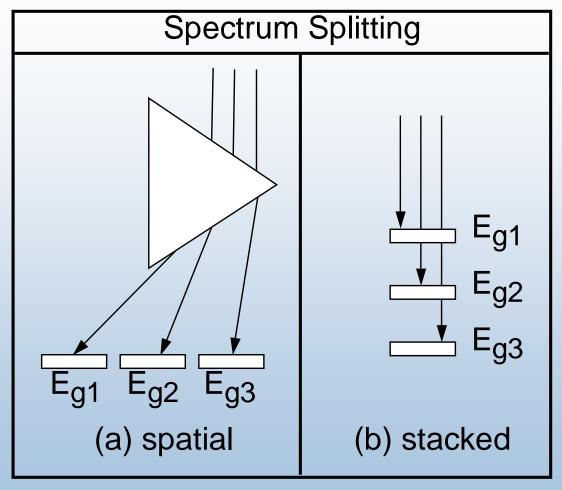
http://www1.eere.energy.gov/solar/review_meeting/pdfs/prm20 09_nielson_thin_cells.pdf

Ability to manipulate tiny cells enables new form factors

In-plane tracking (Greg Nielsen, Sandia)

http://www1.eere.energy.gov/solar/review_meeting/pdfs/prm20 09_nielson_thin_cells.pdf

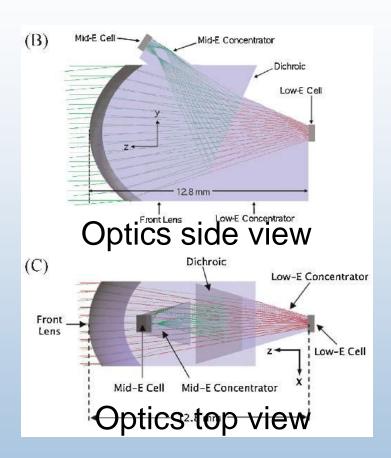
Beyond the Flat-Panel-like Form


Space frame holding large dishes

Ball optics delivers light to cells

rehnu.com

Spectrum Splitting



The monolithic stacked cell is an extremely elegant and practical photon sorter!

Spectrum Splitting – DARPA VHESC

Very high 38.5% module eff

20x concentration

Conclusions

CPV is a very rich field for innovation –

The many innovations to date are just a beginning